3

Equilibrium of a Particle

3.2 The Free-Body Diagram SPRINGS, CABLES, AND PULLEYS

Spring Force $=$ spring constant * deformation, or

$$
\mathrm{F}=\mathrm{k} * \mathrm{~S}
$$

With a frictionless pulley, $\mathrm{T}_{1}=\mathrm{T}_{2}$

- Coplanar Systems

- Procedure for Analysis
- Free-Body Diagram
- Establish the x, y axes
- Label all the unknown and known forces
- Resolve all forces in x, y directions
- Apply the equations of equilibrium
$\boldsymbol{\Sigma F x}=\mathbf{0}$
$\Sigma \mathrm{Fy}=0$

Determine the required length of the cord $A C$ so that the 8 kg lamp is suspended. The undeformed length of the spring $A B$ is $l^{\prime} A B=0.4 \mathrm{~m}$, and the spring has a stiffness of $k_{A B}=300 \mathrm{~N} / \mathrm{m}$.

$$
\begin{array}{lll}
+\rightarrow & \sum \mathbf{F}_{\mathrm{x}}=0 ; & T_{A B}-T_{A C} \cos 30^{\circ}=0 \\
+\uparrow & \sum \mathrm{F}_{\mathrm{y}}=0 ; & T_{A B} \sin 30^{\circ}-78.5 N=0
\end{array}
$$

Solving,
$T_{A C}=157.0 \mathrm{kN}$
$T_{A B}=136.0 \mathrm{kN}$

FBD at Point A

Three forces acting, force by cable AC, force in spring $A B$ and weight of the lamp.
If force on cable $A B$ is known, stretch of the spring is found by $F=k s$.
$\rightarrow \quad \sum F_{X}=0 ; \quad T_{A B}-T_{A C} \cos 30^{\circ}=0$
$+\uparrow \quad \sum F_{y}=0 ; \quad T_{A B} \sin 30^{\circ}-78.5 N=0$
Solving,

$$
\begin{aligned}
& T_{A C}=157.0 \mathrm{kN} \\
& T_{A B}=136.0 \mathrm{kN}
\end{aligned}
$$

$$
\begin{aligned}
T_{A B}=k_{A B} S_{A B} ; 136 . O N & =300 \mathrm{~N} / \mathrm{m}\left(s_{A B}\right) \\
s_{A B} & =0.453 \mathrm{~m}
\end{aligned}
$$

For stretched length,

$$
I_{A B}=I_{A B}+s_{A B}
$$

$$
\mathrm{I}_{\mathrm{AB}}=0.4 \mathrm{~m}+0.453 \mathrm{~m}
$$

$$
=0.853 \mathrm{~m}
$$

> For horizontal distance $B C$, $2 \mathrm{~m}=\mathrm{I}_{\mathrm{AC}} \cos 30^{\circ}+0.853 \mathrm{~m}$ $\mathrm{I}_{\mathrm{AC}}=1.32 \mathrm{~m}$

- Three-Dimensional Force Systє
- Procedure for Analysis Free-body Diagram
- Establish the $\mathrm{z}, \mathrm{y}, \mathrm{z}$ axes
- Label all known and unknowı
- Put all forces in a vector form Equations of Equilibrium
- Apply

$\boldsymbol{\Sigma F x}=\mathbf{0}, \boldsymbol{\Sigma F y}=\mathbf{0}$ and $\Sigma \mathbf{\Sigma F z}=\mathbf{0}$
- Substitute vectors into $\Sigma \mathbf{F}=0$ and set $\mathbf{i}, \mathbf{j}, \mathbf{k}$ components $=0$

Given:F1, F2 and F3. Find: The force F required to keep particle \mathbf{O} in equilibrium

- Given:F1, F2 and F3.

Find: The force F required to keep particle \mathbf{O} in equilibrium. SOLUTION.

Put all forces in a vector form
$\overrightarrow{\mathbf{F 1}}=\{400 \mathrm{j}\} \mathrm{N}$
$\overrightarrow{\mathbf{F 2}}=\{-800 \mathrm{k}\} \mathrm{N}$
$\overrightarrow{F_{3}}=F_{3} * \frac{\overrightarrow{0 B}}{|\overrightarrow{O B}|}=700 * \frac{(-2,-3,6)}{\sqrt{2^{2}+3^{2}+6^{2}}}$
$=\{-200 \mathbf{i}-300 \mathbf{j}+600 \mathbf{k}\} N$
$F=\left\{F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{\mathbf{z}} \mathbf{k}\right\} N$

- Given:F1, F2 and F3.

Find: The force F required to keep particle O in equilibrium.
F1 $=\{400 \mathrm{j}\} \mathrm{N}$
$\mathbf{F 2}=\{-800 \mathbf{k}\} \mathrm{N}$
$\overrightarrow{\mathrm{FB}}=\mathrm{F} 3 * \frac{\overrightarrow{0 B}}{|\overrightarrow{O B}|}=700 * \frac{(-2,-3,6)}{\sqrt{2^{2}+3^{2}+6^{2}}}$
$=\{-200 \mathbf{i}-300 \mathbf{j}+600 \mathbf{k}\} \mathrm{N}$
$F=\{F x i+F y j+F z k\} N$
For equillibruim at O
$\Sigma F x=-200+F x=0 ; \quad F x=200 N$
$\Sigma F y=400-300+F y=0 ; \quad F y=-100 N$
$\mathrm{FFz}=-800+600+\mathrm{Fz}=0 ; \quad \mathrm{Fz}=200 \mathrm{~N}$
Thus, $\vec{F}=\{200 \mathbf{i}-100 \mathbf{j}+200 \mathbf{k}\} \mathrm{N}$

Given: A 100 Kg crate, as shown, is supported by three cords. One cord has a spring in it.
Find: Tension in cords AC and AD and the stretch of the spring.

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{F}_{\boldsymbol{B}}}=\mathbf{F}_{\mathrm{B}} \mathrm{~N} \boldsymbol{i} \\
& \overrightarrow{\boldsymbol{F}_{C}}=\mathrm{F}_{\mathrm{C}} \mathrm{~N}\left(\cos 120^{\circ} \boldsymbol{i}+\cos 135^{\circ} \boldsymbol{j}+\cos 60^{\circ} \boldsymbol{k}\right) \\
& =\left\{-0.5 \mathrm{~F}_{\mathrm{C}} \boldsymbol{i}-0.707 \mathrm{~F}_{\mathrm{C}} \boldsymbol{j}+0.5 \mathrm{~F}_{\mathrm{C}} \boldsymbol{k}\right\} \mathrm{N} \\
& \overrightarrow{\mathrm{~F}_{\mathrm{D}}}=\mathrm{F}_{\mathrm{D}} * \frac{\overrightarrow{\boldsymbol{A D}}}{|\overrightarrow{\boldsymbol{A D}}|}=\mathrm{F}_{D} * \frac{(-\mathbf{1 , 2 , 2})}{\sqrt{\mathbf{1}^{2}+\mathbf{2}^{2}+\mathbf{2}^{\mathbf{2}}}} \\
& =\left\{-0.3333 \mathrm{~F}_{\mathrm{D}} \boldsymbol{i}+0.667 \mathrm{~F}_{\mathrm{D}} \boldsymbol{j}+0.667 \mathrm{~F}_{\mathrm{D}} \boldsymbol{k}\right\} \mathrm{N} \\
& \overrightarrow{\boldsymbol{W}}=(-\mathrm{mg}) \boldsymbol{k}=\left(-100 \mathrm{~kg} * 9.81 \mathrm{~m} / \mathrm{sec}^{2}\right) \boldsymbol{k}=\{-981 \boldsymbol{k}\} \mathrm{N}
\end{aligned}
$$

Now equate the respective $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ components to zero.

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{B}}-0.5 \mathrm{~F}_{\mathrm{C}}-0.333 \mathrm{~F}_{\mathrm{D}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{y}}=-0.707 \mathrm{~F}_{\mathrm{C}}+0.667 \mathrm{~F}_{\mathrm{D}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{z}}=0.5 \mathrm{~F}_{\mathrm{C}}+0.667 \mathrm{~F}_{\mathrm{D}}-981 \mathrm{~N}=0 \\
& \mathrm{~F}_{\mathrm{C}}=813 \mathrm{~N} \quad \mathrm{~F}_{\mathrm{D}}=862 \mathrm{~N} \quad \mathrm{~F}_{\mathrm{B}}=693.7 \mathrm{~N}
\end{aligned}
$$

The spring stretch is (from $\mathrm{F}=\mathrm{k} * \mathrm{~s}$)

$$
\mathrm{s}=\mathrm{F}_{\mathrm{B}} / \mathrm{k}=693.7 \mathrm{~N} / 1500 \mathrm{~N} / \mathrm{m}=0.462 \mathrm{~m}
$$

Given: A 150 Kg plate, as shown, is supported by three cables and is in equilibrium. Find: Tension in each of the cables.

$$
\begin{aligned}
& \boldsymbol{W}=150(9.81) \boldsymbol{k}=1472 \boldsymbol{k N} \\
& \overrightarrow{\mathrm{~F}}_{\mathrm{B}}=\mathrm{F}_{\mathrm{B}} * \frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}=\mathrm{F}_{B} * \frac{(4,-6,-12)}{\sqrt{4^{2}+6^{2}+12^{2}}}=\mathrm{F}_{\mathrm{B}} * \frac{(4,-6,-12)}{14} \\
& \overrightarrow{\mathrm{Fc}}=\mathrm{Fc}_{\mathrm{c}} * \frac{\overrightarrow{A C}}{|\overrightarrow{A C}|}=\mathrm{F}_{C} * \frac{(-6,-4,-12)}{\sqrt{6^{2}+4^{2}+12^{2}}}=\mathrm{Fc}_{\mathrm{c}} * \frac{(-6,-4,-12)}{14} \\
& \overrightarrow{F_{D}}=F_{D} * \frac{\overrightarrow{A D}}{|\overrightarrow{A D}|}=F_{D} * \frac{(-4,6,-12)}{\sqrt{4^{2}+6^{2}+12^{2}}}=F_{D} * \frac{(-4,6,-12)}{14} \\
& \sum \mathrm{~F}_{\mathrm{x}}=(4 / 14) \mathrm{F}_{\mathrm{B}}-(6 / 14) \mathrm{F}_{\mathrm{C}}-(4 / 14) \mathrm{F}_{\mathrm{D}}=0 \\
& \sum \mathrm{~F}_{\mathrm{y}}=(-6 / 14) \mathrm{F}_{\mathrm{B}}-(4 / 14) \mathrm{F}_{\mathrm{C}}+(6 / 14) \mathrm{F}_{\mathrm{D}}=0 \\
& \sum \mathrm{~F}_{\mathrm{z}}=(-12 / 14) \mathrm{F}_{\mathrm{B}}-(12 / 14) \mathrm{F}_{\mathrm{C}}-(12 / 14) \mathrm{F}_{\mathrm{D}}+1472=0 \\
& \mathrm{~F}_{\mathrm{B}}=858.67 \mathrm{~N} \\
& \mathrm{~F}_{\mathrm{c}}=0 \mathrm{~N} \\
& F_{D}=858.67 \mathrm{~N}
\end{aligned}
$$

If the whole assembly is in equilibrium ,determine the tension developed in each cables

$$
\begin{aligned}
\vec{T}_{B}= & \mathrm{T}_{\mathrm{B}} \boldsymbol{i} \\
\overrightarrow{\boldsymbol{T}}_{C}= & -\left(\mathrm{T}_{\mathrm{C}} \cos 60^{\circ}\right) \sin 30^{\circ} \boldsymbol{i} \\
& +\left(\mathrm{T}_{\mathrm{C}} \cos 60^{\circ}\right) \cos 30^{\circ} j \\
& +\mathrm{T}_{\mathrm{C}} \sin 60^{\circ} \boldsymbol{k} \\
\overrightarrow{\boldsymbol{T}_{C}}= & \mathrm{T}_{\mathrm{C}}(-0.25 i+0.433 \boldsymbol{j}+0.866 k) \\
\overrightarrow{\boldsymbol{T}_{D}}= & \mathrm{T}_{\mathrm{D}} \cos 120^{\circ} \boldsymbol{i}+\mathrm{T}_{\mathrm{D}} \cos 120^{\circ} j+\mathrm{T}_{\mathrm{D}} \cos 45^{\circ} k \\
\overrightarrow{\boldsymbol{T}_{D}}= & \mathrm{T}_{\mathrm{D}}(-0.5 i-0.5 j+0.7071 k) \\
\vec{W}= & -300 \boldsymbol{k}
\end{aligned}
$$

Equating the respective $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ components to zero,

$$
\begin{align*}
& \Sigma F_{x}=T_{B}-0.25 T_{C}-0.5 T_{D}=0 \tag{1}\\
& \Sigma F_{y}=0.433 T_{C}-0.5 T_{D}=0 \tag{2}\\
& \Sigma F_{z}=0.866 T_{C}+0.7071 T_{D}-300=0 \tag{3}
\end{align*}
$$

Using (2) and (3), $T_{C}=203 \mathrm{lb}, T_{D}=176 \mathrm{lb}$ Substituting T_{C} and T_{D} into (1), $T_{B}=139 \mathrm{lb}$

- If the whole assembly is in equilibrium ,and supported by two cables and strut AD .Given 400 lb crate, determine the magnitude of the tension developed in each cables and the force developed along strut AD.

$\vec{W}=$ weight of crate $=-400 \mathrm{klb}$
$\overrightarrow{\mathrm{F}_{\mathrm{B}}}=\mathrm{F}_{\mathrm{B}} * \frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}=\mathrm{F}_{B} * \frac{(-2,-6,1.5)}{\sqrt{2^{2}+6^{2}+1.5^{2}}}=\mathrm{F}_{\mathrm{B}} * \frac{(-2,-6,1.5)}{6.5}$
$\overrightarrow{\mathrm{Fc}}=\mathrm{Fc}_{\mathrm{c}} * \frac{\overrightarrow{A C}}{|\overrightarrow{A C}|}=\mathrm{F}_{C} * \frac{(2,-6,3)}{\sqrt{2^{2}+6^{2}+3^{2}}}=\mathrm{Fc}_{\mathrm{c}} * \frac{(2,-6,3)}{7}$
$\mathrm{F}_{\mathrm{D}}=\mathrm{F}_{\mathrm{D}} * \frac{\overrightarrow{D A}}{|\overrightarrow{D A}|}=\mathrm{F}_{D} * \frac{(0,6,2.5)}{\sqrt{6^{2}+2.5^{2}}}=\mathrm{F}_{\mathrm{D}} * \frac{(0,6,2.5)}{6.5}$
$\sum F_{X} \quad \frac{-2}{6.5} F_{B}+\frac{2}{7} F_{C}=0$
$\sum F_{Y} \quad \frac{-6}{6.5} F_{B}-\frac{6}{7} F_{C}+\frac{6}{6.5} F_{D}=0$
$\sum F_{Z} \quad \frac{1.5}{6.5} F_{B}+\frac{3}{7} F_{C}+\frac{2.5}{6.5} F_{D}=400$
(3)
$\boldsymbol{F}_{\boldsymbol{B}}=274.14127, \boldsymbol{F}_{\boldsymbol{C}}=295.30306, \boldsymbol{F}_{\boldsymbol{D}}=548.3284$

